微分方程式の解法

Sponsored
微分方程式の解法

【全9パターン網羅】微分方程式の解法一覧

微分方程式を形状ごとに分類し、それぞれの解法を解説しています。解法の基本は変数分離形または定数係数の線形の微分方程式にあり、より複雑な微分方程式は、これらのパターンに帰着させることを目標にしていると考えると、全パターンを簡単に覚えることができます。
微分方程式の解法

【微分方程式の解法9】完全微分方程式

完全微分方程式と呼ばれる微分方程式の解き方について解説する。この微分方程式は、式の形状が全微分となっていることを利用して簡単に解くことができる。そのため実務的な解法の重点は、与えられた方程式が完全微分方程式であるかを判定する、または完全微分方程式になるように変換することにある。
微分方程式の解法

【微分方程式の解法8】定数係数n階線形

定数係数n階線形微分方程式と呼ばれる微分方程式の解き方について解説する。定数係数2階線形方程式が2次の特性方程式の解の種類に基づいて一般解の形状を決定するのと同様に、n階線形の場合はn次の特性方程式を用いる。n次の場合も、特性方程式の解と微分方程式の一般解についての基本的な考え方には、「特性方程式の意味・なぜ作るのか」の内容をそのまま適用できる。
微分方程式の解法

【微分方程式の解法7】オイラーの微分方程式

オイラーの微分方程式と呼ばれる微分方程式の解き方について解説する。この方程式は係数が定数でない2階線形微分方程式の特殊パターンであり、対数をとって変数変換することにより、定数係数に変形できる。
微分方程式の解法

【微分方程式の解法6】定数係数2階非同次線形

定数係数2階非同次線形と呼ばれる微分方程式の解き方について解説する。この形は、同じ定数係数2階微分方程式の「同次形」にxの多項式が加わったものである。一般解はこれを反映し、同次形の一般解(余関数)と特殊解の和によって表される。
微分方程式の解法

【微分方程式の解法5】定数係数2階同次線形

定数係数2階同次線形と呼ばれる微分方程式の解き方について解説する。この方程式は、特性方程式の解の個数によって、微分方程式の解の形状を決定する解法パターンのもっとも基本的なものである。「特性方程式の意味・なぜ作るのか?」を合わせて読むと、特性方程式の解と微分方程式の解の関係を暗記ではなく原理として理解できる。
微分方程式の解法

【微分方程式の解法4】ベルヌーイの微分方程式

ベルヌーイの微分方程式と呼ばれる、次数の大きな変数を持つ微分方程式の解き方について解説する。この方程式では、大きな次数を消去するように変数変換を行い、1階線形に帰着させることを目標とする。変数変換を行う際に、逆数を取るような計算をするため、0を場合分けするよう注意する。
微分方程式の解法

【微分方程式の解法3】1階線形

1階線形と呼ばれる微分方程式の解き方について解説する。その中でも特に非同次形と呼ばれる形では、両辺に適切な式をかけることで、解を直接求めることができる。両辺にかけるべき式は積分を含むので、解法を一般化すると計算式が複雑になってしまうため、例題を通して解く流れを理解してほしい。
微分方程式の解法

【微分方程式の解法2】1階同次形

1階同次形と呼ばれる微分方程式の解き方について解説する。登場する変数の次数が等しいため、それらを分数の形にして新たな変数へと変換し、変数分離型へ帰着させることを基本方針とする。その際、分母になる変数が0となる場合を考慮し、場合分けして計算するよう注意する。
微分方程式の解法

【微分方程式の解法1】変数分離形

変数分離形と呼ばれる微分方程式の解き方について解説します。これは微分方程式の解法としてもっとも基本的なものであり、より複雑な微分方程式の解法も、式変形によりこの形に帰着させることを目標としているため、確実に習得しておきたい考え方です。